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The Gulf of Maine (GOM) is a highly complex environment and previous studies
have suggested the need to account for spatial nonstationarity in species distribution
models (SDMs) for the American lobster (Homarus americanus). To explore impacts of
spatial nonstationarity on species distribution, we compared models with the following
three assumptions : (1) large-scale and stationary relationships between species
distributions and environmental variables; (2) meso-scale models where estimated
relationships differ between eastern and western GOM, and (3) finer-scale models
where estimated relationships vary across eastern, central, and western regions of the
GOM. The spatial scales used in these models were largely determined by the GOM
coastal currents. Lobster data were sourced from the Maine-New Hampshire Inshore
Bottom Trawl Survey from years 2000–2019. We considered spatial and environmental
variables including latitude and longitude, bottom temperature, bottom salinity, distance
from shore, and sediment grain size in the study. We forecasted distributions
for the period 2028–2055 using each of these models under the Representative
Concentration Pathway (RCP) 8.5 “business as usual” climate warming scenario. We
found that the model with the third assumption (i.e., finest scale) performed best. This
suggests that accounting for spatial nonstationarity in the GOM leads to improved
distribution estimates. Large-scale models revealed a tendency to estimate global
relationships that better represented a specific location within the study area, rather than
estimating relationships appropriate across all spatial areas. Forecasted distributions
revealed that the largest scale models tended to comparatively overestimate most
season × sex × size group lobster abundances in western GOM, underestimate in the
western portion of central GOM, and overestimate in the eastern portion of central GOM,
with slightly less consistent and patchy trends amongst groups in eastern GOM. The
differences between model estimates were greatest between the largest and finest scale
models, suggesting that fine-scale models may be useful for capturing effects of unique
dependencies that may operate at localized scales. We demonstrate how estimates of
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season-, sex-, and size- specific American lobster spatial distribution would vary based
on the spatial scale assumption of nonstationarity in the GOM. This information may
help develop appropriate local adaptation measures in a region that is susceptible to
climate change.

Keywords: nonstationary, spatial distribution, American lobster, Gulf of Maine, scale-dependent, climate change,
generalized additive models

INTRODUCTION

American lobster (Homarus americanus) is the most valuable
fishery in the United States [National Oceanographic and
Atmospheric Administration (NOAA), 2018]. The American
lobster fishery in the state of Maine was worth 486 million
dollars in 2019, which comprised roughly 77.1% of the total
worth of the entire lobster fishery on the Atlantic coast in
that year (∼=$630 million, ACCSP, 2019). The Gulf of Maine
(GOM) and Georges Bank (GBK) stock contributes to more
than 90% of the American lobster landings in the United States
(ASMFC, 2020). Additionally, the GOM has been thought to
be warming 99% faster than the global ocean (Pershing et al.,
2015). Knowing that the American lobster fishery is the most
valuable fishery and that species’ distributions commonly shift in
pursuit of ideal habitat conditions (Pinsky et al., 2013; Greenan
et al., 2019), it is important to understand and accurately estimate
the spatial distribution of this species, especially in a rapidly
changing environment.

Although the GOM/GBK lobster stock is not overfished and
overfishing is not occurring (ASMFC, 2020), lobster abundance
throughout the GOM is not uniformly or randomly distributed
(Steneck and Wilson, 2001). Environmental factors contribute
to the spatial distribution of lobster abundance, and evidence
of temperature, salinity, and productivity gradients that range
from northeast to southwest GOM have been observed (Lynch
et al., 1997; Pettigrew et al., 1998; Chang et al., 2016). These
gradients may be attributed in part by the Gulf of Maine Coastal
Currents (GMCC), which form cyclonic currents across the
GOM (Townsend et al., 2015; Chang et al., 2016). The GMCC
can be further distinguished as two sub currents; the Eastern
Maine Coastal Current (EMCC) and the Western Maine Coastal
Current (WMCC), where the EMCC diverges offshore in the
Penobscot Bay area and the WMCC begins along the coast
(Xue et al., 2008; Chang et al., 2016). These currents can affect
environmental variables as well as processes and interactions such
as primary production levels, stock-recruitment relationships,
and vertical mixing (Incze et al., 2010; Chang et al., 2016).

Species distribution models are widely used to estimate
and predict organisms’ spatial and/or temporal distributions
across the world (Bakka et al., 2016; Diarra et al., 2018;
Becker et al., 2020). Spatial and/or temporal nonstationarity is
often present in ecological systems when relationships between
response and explanatory variables vary across space and/or
time, which means that the association between response
and explanatory variables decrease with increasing distance

Abbreviations: FLFA, fall female adults; FLMA, fall male adults; FLFJ, fall female
juveniles; FLMJ, fall male juveniles; SPFA, spring female adults; SPMA, spring male
adults; SPFJ, spring female juveniles; SPMJ, spring male juveniles.

(Brunsdon et al., 1996; Fotheringham et al., 2002). Past literature
has demonstrated evidence of spatial nonstationarity in the
GOM region (Li et al., 2018; Staples et al., 2019). Accounting
for nonstationarity in SDMs allows for the incorporation
of spatial and/or temporal dependencies that cannot be
explained by environmental variables alone (Bakka et al., 2016).
However, past literature often have not compared differences
in species distribution estimates between models applied at
various spatial scales.

Generalized linear models (GLMs, Nelder and Wedderburn,
1972), generalized additive models (GAMs) (GAMs; Hastie and
Tibshirani, 1986), and geographically weighted regression (GWR;
Brunsdon et al., 1996) are a few commonly used models for
estimating species distributions. Inherently, GLMs and GAMs
are stationary models because they estimate global relationships
between the response and explanatory variables that are applied
to all locations. In contrast, GWR models can estimate unique
parameters at each location across space, thus allowing for the
assumption of spatial nonstationarity to be met (Charlton and
Fotheringham, 2009). However, a limitation of GWR models is
that they cannot be used to make estimations outside the study
area (extrapolation) or for forecasting to novel periods, as doing
so would violate the assumption of nonstationarity one is trying
to meet (Osborne et al., 2007; Hothorn et al., 2011; Li et al.,
2018). Since extrapolation and forecasted estimations are often
desired when modeling species distributions, one recommended
approach is to utilize multiple stationary models across a region
of interest (Fotheringham et al., 2002; Windle et al., 2009). This
approach will not only allow for extrapolation and forecasting
procedures, but will also better account for assumptions of
nonstationarity as using more than one model will result in
multiple unique parameters estimated across localized areas.

Using American lobster in the GOM as a case study,
we explore the effects of nonstationary modeling on lobster
spatial distributions and compare the results to those of a
stationary model. To test the effects of spatial nonstationarity,
we develop season-, sex-, and size- specific models that predict
the spatial distribution of American lobsters using GAMs of
varying spatial scales and extents. Variation in spatial distribution
between the models is evaluated and potential management
implications are discussed.

MATERIALS AND METHODS

Study Area and Data Sources
American lobster abundance data were sourced from the Maine-
New Hampshire Inshore Bottom Trawl Survey. The Maine-New
Hampshire Inshore Bottom Trawl Survey will be referenced as
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the bottom trawl survey. The bottom trawl survey is conducted
by the Maine Department of Marine Resources (DMR) since
the fall of 2000. This survey is semiannual, where separate
surveys are conducted in the fall and spring seasons of each
year. The bottom trawl survey spans 4,665 squared nautical miles
(16000.5 km2) (Sherman et al., 2005) and is subdivided into five
regions (Figure 1). The five regions include (1) New Hampshire
and Southern Maine, (2) Mid-Coast Maine, (3) Penobscot Bay,
(4) Mt. Desert Island, and (5) Downeast Maine (Figure 1).

The survey area extends 12 nautical miles (22.22 km) offshore
and is broken up into 4 different depth strata (Figure 1). A target
of 115 stations is set for each survey, creating a sampling density
of roughly one station for every 40 NM2 (137.20 km2). Random
stations in this survey are chosen by dividing the survey area into
a 1 NM2 (3.43 km2) grid, where cells are chosen at random using
an Excel random number generator (Sherman et al., 2005). Each
survey aims for a target tow of 20 min at a speed of 2.2–2.3 knots
(4.1–4.3 km/h), which covers approximately 0.8 NM (1.48 km,
Sherman et al., 2005). Data from 486,971 individual lobsters were
included in this study. See Supplementary Figures 1, 2 for mean
catch trends in the bottom trawl survey data by region.

This study utilizes data from the 2000–2019 bottom trawl
surveys. Biological data taken on each lobster include carapace
length (mm), sex, presence of eggs or v-notches, and if any
noticeable damage is present. Lobsters are then sorted into
baskets by sex and baskets are weighed once filled (Sherman
et al., 2005). Data have been standardized to 20-min tows to
ensure all catch, weight, and length frequency information is
comparable. In addition to biological data, bottom water salinity,
bottom water temperature, and depth data were collected during
each tow by using a Sea-Bird ElectronicsTM 19plus SEACAT
profiler, which was attached to the starboard door wire, turned
on and lowered overboard (Sherman et al., 2005). Bottom
trawl survey bottom temperature and bottom salinity data were
recorded at a single point along each tow transect and do
not represent an average across each tow length, The net used
for this survey is a type of modified shrimp net that is used
for “near-bottom dwelling species,” although not intended for
any single species in particular (Sherman et al., 2005). More
information about the Maine-New Hampshire Inshore Bottom
Trawl survey procedures, protocols, or specifics can be found
in Sherman et al. (2005). This survey has been found to yield
informative data for studying lobster distributions and habitats
in the GOM (Tanaka and Chen, 2016; Tanaka et al., 2019;
Hodgdon et al., 2020).

Bottom water temperature, bottom water salinity, average
depth, latitude, and longitude information from each tow were
used from the bottom trawl survey to inform the models.
Distance from shore and median sediment size were also
estimated and included in the models. Distance from shore
was estimated using the “distances” function from the package
“distances” (Savje, 2019) in R, which finds the shortest distance
between points, in this case, the distance between the midpoint
latitude and longitude of a tow and the closest point on the
coast. Sediment data were sourced from the East Coast Sediment
Texture Database which is run by the United States Geological
Survey (U.S. Geological Survey, 2014). This survey was last
updated in 2014 and contains information such as location,

description, texture, and size (phi, −log of grain size) taken
by different marine sampling programs across various locations
around the world. Both mean and median sediment size values
are supplied in this dataset, but median sediment size was
used over mean sediment size, as the former is more robust to
outliers (Tůmová et al., 2019). The median grain size at each
survey location was estimated using thin plate splines. These data
can be found at https://woodshole.er.usgs.gov/openfile/of2005-
1001/htmldocs/datacatalog.htm and more information about the
East Coast Sediment Texture Database can be found in U.S.
Geological Survey (2014).

Although models were built using bottom trawl survey
bottom temperature and bottom salinity data, additional bottom
temperature and bottom salinity data were needed to create
interpolated distribution plots. These additional data were not
used to inform the models, but rather served as data that
the models used to be able to estimate lobster density at
unsampled locations. Thus, bottom temperature and bottom
salinity data throughout the study area were obtained by
spatially interpolating Finite-Volume Community Ocean Model
(FVCOM) data. The FVCOM is an advanced ocean circulation
model that uses an unstructured grid format, making it highly
applicable for use in regions with complex coastlines and
bathymetry (Chen et al., 2006; Li et al., 2017). The FVCOM
was developed by University of Massachusetts Dartmouth and
Woods Hole Oceanographic Institution. More information about
the FVCOM can be found in Chen et al. (2006).

Forecasted distributions were made for the period 2028–
2055. The forecasted bottom temperature and bottom salinity
data were sourced from the National Oceanic and Atmospheric
Administration (NOAA) and represent an ensemble projection
of all models used to create the Intergovernmental Panel
on Climate Change’s (IPCC) Coupled Model Intercomparison
Project Phase 5 (CMIP5) data (NOAA Physical Science
Laboratory, n.d.). Data for the Representative Concentration
Pathway (RCP) 8.5 “business as usual” scenario were used. These
data are forecasted anomalies based on the reference time period
1956–2005 and are estimated for the period 2006–2055. These
data are anomalies, and thus hindcasted bottom temperature and
bottom salinity data must be used in tandem from the same
reference period. The anomalies were added to the corresponding
reference period FVCOM data. However, the earliest available
FVCOM data begins in 1978 rather than 1956, limiting the
available reference period in this study to 1978–2005. With
the reference period reduced from 50 to 27 years, the CMIP5
forecasting period must also be reduced, respectively, from the
initial 2006–2055 to 2028–2055 for this study. The forecasting
period 2028–2055 is used because it represents the maximum
amount of FVCOM data than can be used while also confidently
applying IPCC forecasted anomalies. Delta downscaling methods
were also applied so that forecasted anomalies could be applied
to the same scale as the FVCOM data. Specifically, bivariate
spline interpolation was applied using the package “akima” in R
(Akima and Gebhardt, 2016).

Model Development
Lobster densities were standardized per tow and divided into
eight groups based on season (fall and spring), sex (female
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FIGURE 1 | Maine-New Hampshire Inshore Bottom Trawl Survey regions and depth strata. This survey is subdivided into five regions which include (1) New
Hampshire and Southern Maine, (2) Mid-Coast Maine, (3) Penobscot Bay, (4) Mt. Desert Island, and (5) Downeast Maine. Missing white areas within the 12-mile
survey grid area are non-surveyable locations due to the topography of the ocean floor at those locations.

and male), and size (adult and juvenile; Li et al., 2018; Chang
et al., 2010). Juvenile lobsters were distinguished as lobsters
with carapace lengths <50 mm due to differences in activity
patterns (Lawton and Lavalli, 1995). Each of the eight groups
were modeled independently under three different techniques:
(1) a GAM that assumes stationary relationships between
species distributions and environmental variables (GOM–GAM);
(2) a GAM that assumes nonstationary relationships between
eastern and western GOM (West-GAM, East1-GAM), and (3) a
GAM that assumes nonstationary relationships between eastern,
central, and western GOM (West-GAM, Central-GAM, and
East2-GAM). Partitioning of data for these models can be
visualized in Figure 2.

Previous literature in the GOM have estimated species
distributions using stationary models at a large spatial scale
(Chang et al., 2010; Becker et al., 2020). This technique is
represented in this study by the “GOM–GAM” model, which
assumes no nonstationarity and is applied at the largest spatial
scale. This technique also assumes that nonlinear (but stationary)
relationships between lobster density and environmental factors
are sufficient to accurately predict a species spatial distribution
across an ecologically complex region. Other literature has
highlighted differences in environment-abundance relationships
between localized regions (Li et al., 2018; Liu et al., 2019). Thus,
the bisected (comprized of West-GAM and East1-GAM) and

trisected (comprized of West-GAM, Central-GAM, and East2-
GAM) models were constructed at smaller spatial scales to
capture evidence of these differences. The purpose of this study
is to explore how spatial distribution predictions change under
models with varying assumptions of nonstationarity (or lack
thereof) in hindcasting and forecasting scenarios.

The first set of localized models (West-GAM and East1-
GAM) broke up the data into east and west zones. The
West-GAM used data that were west of −69.27457 degrees
longitude. The East1-GAM was represented by data east of
−69.27457 degrees longitude. The decision to split the data
up along the −69.27457 degree longitude line was in part
because regions one and two of the bottom trawl survey
are west of the Penobscot Bay region and −69.27457 is
the approximate longitudinal line where region two of the
bottom trawl survey intersects the coastline. This decision
was also driven by the GOM coastal currents and the
supporting literature that states the southern extent of the
EMCC includes the Penobscot Bay region (Xue et al., 2008;
Chang et al., 2016).

Although some literature supports this decision, it is difficult
to exactly pinpoint a fine line of where the EMCC diverges and
the WMCC begins. Thus, another argument can be made in
which the Penobscot Bay area (∼=region three in the bottom
trawl survey) could act as a potential buffer zone, in which this
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FIGURE 2 | Visual representation of each model utilized in this study. Each colored quadrilateral represents a separate GAM that was ran on the observed data
points contained within that area. Red lines designate bottom trawl survey regional boundaries.

area of possible mixing between currents could throw off GAM
relationship curves if the this area were to be included into
a particular side. One previous study used a similar trisected
approach to view relationships between initial intra-annual molts
of American lobster and bottom temperatures in the GOM
(Staples et al., 2019). Consequently, the second set of localized
models (West-GAM, Central-GAM, and East2-GAM) are built
in in such a way that the West-GAM is the same in spatial
area and extent as previously described, but the Central-GAM
is comprised of data between −69.27457 and −68.58246 degrees
longitude, and the East2-GAM is comprised of data east of
−68.58246 degrees longitude.

Prior to model construction, covariance matrices and
variance inflation factor (VIF) tests were run to check for
variable independence and multicollinearity. Running multiple
covariance metrics showed a high dependence between distance
from shore and average depth variables. Distance from shore was
kept over average depth because distance from shore had a lower
covariance value amongst the rest of the variables than average
depth. VIFs quantify the multicollinearity amongst variables.
Variables with VIF numbers >3 were excluded from the model
(Zuur et al., 2009), supporting the decision to remove average
depth as a variable when building the models. The following
variables were shown to be significant in every GAM: latitude
and longitude combined as an interaction term, and bottom
temperature. Bottom salinity, distance from shore, and sediment
size were found to be significant in some models, but not all.
Significant variables and deviance explained for each group are
summarized in Tables 1, 2, respectively.

Generalized Additive Models were used to evaluate the
relationships between lobster abundance and environmental
variables. A GAM is an extension of a generalized linear model,
with a smoothing function added. GAMs follow the assumptions
that the functions are additive, and the components of the
functions are smooth (Guisan et al., 2002). A separate GAM
was created for each group of lobsters that differs in season, sex,

TABLE 1 | Non-Significant variables for each model and group type.

Group GOM–GAM East1-GAM West-GAM East2-GAM Central-GAM

FLFJ Salinity Salinity Sediment Salinity Salinity, DFS

FLMJ AS Salinity Sediment Salinity Salinity

FLFA Salinity Salinity Sediment AS Salinity, DFS,
sediment

FMLA Salinity AS Sediment AS Salinity, DFS

SPFJ AS AS AS AS Salinity,
sediment

SPMJ AS AS Sediment AS Salinity,
sediment

SPFA AS AS AS AS Salinity,
sediment

SPMA AS AS AS AS Salinity, DFS

Group acronyms are denoted as follows: FL, fall; SP, spring; FJ, female juvenile;
FA, female adult; MJ, male juvenile; MA, male adult. Such that for example FLFJ
represents data taken from female juvenile lobsters in the fall season. Possible
significant variables in each model include bottom temperature, bottom salinity,
latitude and longitude, distance from shore, and sediment grain size. “AS”, all
significant; meaning all tested variables were significant to that particular model
and group. “DFS”, distance from shore variable. “Sediment”, median sediment size
variable; and “Salinity,” bottom salinity variable.
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TABLE 2 | Deviance explained for each model and group type.

Group GOM–GAM Average of
West-East1-GAMs

East1-GAM West-GAM Average of West-
Central-East2-GAMs

East2-GAM Central-GAM

FLFJ 40.0% 52.5% 52.8% 52.2% 62.1% 62.3% 71.8%

FLMJ 40.7% 52.5% 52.8% 52.2% 63.2% 63.7% 73.6%

FLFA 42.6% 51.8% 47.9% 55.6% 56.3% 57.7% 55.7%

FLMA 41.7% 51.9% 49.2% 54.6% 55.6% 56.6% 55.5%

SPFJ 41.7% 51.9% 47.6% 56.1% 56.8% 48.5% 65.8%

SPMJ 44.0% 52.5% 50.5% 54.5% 58.1% 52.6% 67.1%

SPFA 34.4% 36.2% 35.0% 37.3% 40.9% 37.3% 48.2%

SPMA 38.8% 39.8% 41.8% 37.7% 44.5% 45.7% 50.6%

See Table 1 for group acronym explanation.

and size, based on the assumption that males, females, juveniles,
and adults will all respond to environmental variables differently,
and that seasons will also impact the relationships with the
environment differently. We used a tweedie GAM to estimate
lobster abundance (y). GAMs were built using a backward fitting
technique based on covariate significance (p < 0.05; Chang et al.,
2010). A GAM using all potential environmental variables can be
written as:

Lobster abundance (y)

= s(La, Lo)+ s(Bt)+ s(Bs)+ s(DFS)+ s(Ss)

where s is a spline smoother, La, Lo is an interaction term
between latitude and longitude, Bt is bottom temperature (◦C),
BS is bottom salinity (PSU), DFS is distance from shore (decimal
degrees), and Ss is median sediment size (phi).

Hindcasted distribution plots were created for each lobster
season × sex × size group and for each model approach for
the years 2000, 2006, 2012, and 2017 for a total of 96 plots.
Although there are bottom trawl survey data available from 2000–
2019 to inform the models, environmental FVCOM data used
for interpolation are only available until 2017, limiting the most
recent available hindcasting year that can be spatially interpolated
to 2017. Additionally, these years were chosen because they are
roughly evenly spaced throughout the hindcast period of interest,
albeit these methods could be applied to any year(s) 2000–2017.
Forecast distribution plots were also estimated for the 2028–
2055 years period, for a total of 24 forecast distribution plots
(eight lobster groups ×3 model approaches). Model fitting was
accomplished by using all survey data between the years 2000–
2019 and predictions were estimated for each tested year (2000,
2006, 2012, 2017, and the forecast period 2028–2055) separately,
by using the corresponding annual FVCOM data. Differences
between GOM–GAM and localized approaches were determined
by calculating relative differences between density distribution
estimates. Relative differences were estimated using the equation

Relative difference (i)

=

localized estimated density (i)
− “GOM − GAM” estimated density (i)
“GOM − GAM” estimated density (i)

× 100

where i is a location within the study area and “localized”
represents the estimated lobster density at location i
from a localized model (West-GAM, East2-GAM, etc.).
Relative difference plots were generated for each lobster
season× sex× size group and for the same years as the hindcast
and forecast distribution plots. These plots demonstrate the
magnitude and location of where the GOM–GAM models tend
to over or under predict abundances in relation to the localized
approaches. All distribution and relative difference plots were
interpolated using bivariate splines using the package “akima”
in R in order to achieve high resolution smooth distributions
(Akima and Gebhardt, 2016).

Model Fitting and Validation
Root Mean Square Error (RMSE), Akaike Information Criterion
(AIC), and Moran’s I were used to access model fit for all models.
RMSE measures the differences between predicted and observed
values where values closer to zero represent better model fit
(Stow et al., 2009). AIC is another method to test goodness of
fit and model complexity with a model having smaller returned
AIC value being the better model (Zuur et al., 2009). Moran’s I
tests for spatial autocorrelation in residuals where a significant
Moran’s I of −1 signifies perfect clustering of dissimilar values, a
significant Moran’s I value of 0 signifies no autocorrelation, and
a significant Moran’s I of+1 signifies perfect clustering of similar
values. If values are found to be spatially autocorrelated, this is
an issue as it violates the assumption of independence of data
(Zuur et al., 2009; Stephanie, 2016). Additionally, two-fold cross
validation was performed by separating each of the eight groups’
(2 season × 2 sexes × 2 sizes) data into random training and a
testing subset to calibrate the model and validate its predictions
(Li et al., 2018). The percentage of data allocated for the testing
portion was determined by the equation

1/(1+
√

P − 1)

where P is the number of predictor variables (Franklin, 2010;
Li et al., 2018). Cross validation allows visualization of model
performance to examine if model predictions are on average, over
or under predicting abundance compared to observed values. 100
iterations of cross validation were repeated for each model group
and average performance was estimated.
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RESULTS

Model Performance and Validation
Significant variables differed between model types and between
groups. Under the GOM–GAM, only salinity was found to
be non-significant in some groups, whereas both salinity and
sediment size were found to be non-significant in some West-
GAM and East1-GAM groups. Moreover, salinity, sediment,
and distance from shore were found to be non-significant
in some West-GAM, Central-GAM, and East2-GAM groups.
Table 1 summarizes the non-significant variables which were not
included in the final model for each group and spatial scale. The
deviance explained for lobster abundance varied between 34.4
and 44.0% for each group of the GOM–GAM, 36.2–52.5% for the
average West-GAM and East1-GAM group, and 40.9–63.2% for
the average West-GAM, Central-GAM, and East2-GAM group.
Full deviance explained for each specific group can be found in
Table 2. Likewise, the RMSE, AIC and Moran’s I tests showed
similar trends in model fit, with the GOM–GAM demonstrating
the lowest model fit estimates, the West- and East1-GAM
approach demonstrating intermediate model fits, and the West-,
Central-, and East2-GAM approach demonstrating the greatest
model fits (Table 3).

The two-fold cross validation results from 100 iterations
revealed that the models had reasonable prediction skill, as
the average between the 100 iterations was near the 1:1
prediction line for most groups and models. These tests revealed
that most models tended to slightly underpredict abundance,
with exception of the average spring female adult (SPFA)
West- and East1-GAM approach which revealed average slight
overpredictions. The West-, Central-, and East2-GAM approach
cross validation results demonstrated more precision than West-
and East1-GAM or GOM–GAM results. Results from the two-
fold cross validation can be found in the Supplementary
Material section (Supplementary Figures 1–3).

Environmental and Spatial Variables
Environmental and spatial variables were also explored via GAM
response curves for each significant predictor variable. Latitude
and longitude variables were combined as an interaction term
in each model to help account for spatial autocorrelation (Siegel
and Volk, 2019). Response curves varied greatly depending
on independent variable, season, sex, size, and spatial scale of
the model. For bottom temperature, highest partial effect on
abundance was seen between 6 and 10◦C in the spring and
around 10–14◦C in the fall for GOM–GAMs, and between 4
and 10◦C in the spring and 10–14◦C in the fall for the localized
model approaches. For bottom salinity, highest abundance was
seen between 31 and 33 psu for both spring and fall across
all models. The relationship spring male adult (SPMA), spring
female juvenile (SPFJ), and spring male juvenile (SPMJ) groups
had with salinity was unique, compared to other groups. These
group’s response curves demonstrated a higher partial effect on
abundance at salinity levels >32 psu in the west. This may
help explain the distinctive relative difference trends generally
observed in western GOM for the SPMA group. This difference

did not seem to affect the spring juvenile groups, as juvenile
lobster tend to stay in more nearshore waters (Lawton and
Lavalli, 1995), where FVCOM data has shown salinity levels
are generally lower in western GOM. For distance offshore,
highest partial effect on abundance was seen generally between
0.00 and 0.1 decimal degrees (∼=0–6 nautical miles offshore),
and then gradually declined with increasing distance from shore
across most models. For sediment size, highest partial effect on
abundance was seen between 2 and 6 phi (silt – medium grain
sand) across most models. Some season, sex, and size group
curves changed more in shape across spatial extents than others,
but variation was apparent and supports evidence of spatial
nonstationarity in this region. Figure 3 depicts the response
curves between lobster abundance and bottom temperature for
SPMAs (Figures 3A,B) and fall female juveniles (Figures 3C,D).
These figures show how the response curves change, depending
on the spatial scale and location of the testing data. These
figure panels also show where estimated relationship curves
overlap, if at all. For example, in Figure 3B, one can see high
overlap between most model response curves between 5 and
7◦C. However, at temperatures greater than 7◦C, the relationship
curve for the GOM–GAM more closely resembles that of the
response curve for the East2-GAM than for the West- or Central-
GAM. This suggests that if a large-scale model were used to
represent SPMA lobster data, it would better represent eastern
GOM data than central or western GOM data in that temperature
range, and in a climate warming scenario, would underestimate
western GOM abundances. In a region which is expected to
continue experiencing warming temperatures, the implications
of subordinate model spatial scale selection may increase. Many
lobster groupings (season × sex × size) tended to show similar
patterns, where the GOM–GAM response curve for a variable,
more closely resembled the response curve of one localized region
of the GOM more than the other regions.

Model Prediction and Distribution Plots
Fall distribution plots showed greater abundance estimates than
spring plots, which correlates with observations in raw trawl
survey data. Raw fall trawl survey trends show slight declines in
catch in regions three and four since 2015 and in region five since
2016 (Supplementary Figure 4), with trends of offshore catch
increasing overtime. All three model estimates demonstrated
offshore abundance estimates increasing from the 2012–2017
hindcasts, but only the East2-GAM showed indications of a
slight decrease in eastern GOM abundance. Model estimates in
central GOM were most distinctive between models. A trend
emerged in all tested years which demonstrated that as model
spatial scale became finer, clear “hot” and “cold” spots emerged
within the Penobscot Bay area. The Central-GAM showed this
pattern well, with a “hotspot” emerging along the southwest
mouth of Penobscot Bay, and a “coldspot” in the northeast
Penobscot Bay region (Figures 4–7). These patterns correlate well
with American lobster settlement patterns found in Steneck and
Wilson (2001).

The GOM–GAM tended to overpredict the 2017 hindcast
distributions in western GOM, apart from the SPMA group
(Figure 8). In central GOM, the GOM–GAM models tended to
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TABLE 3 | RMSE, Moran’s I, and AIC values for each model and group type.

Group GG RMSE WEG RMSE WCEG
RMSE

GG
Moran’s I

WEG
Moran’s I

WCEG
Moran’s I

GG AIC Average
WEG AIC

Average
WCEG AIC

FLFJ 1.67 1.53 1.44 0.51 0.42 0.16 9,009 4,341 2,757

FLMJ 1.67 1.54 1.43 0.49 0.38 0.14 8,978 4,327 2,736

FLFA 1.29 1.17 1.09 0.45 0.32 0.07 14,398 7,064 4,585

FLMA 1.24 1.12 1.06 0.43 0.30 0.07 14,428 7,069 4,597

SPFJ 1.68 1.57 1.51 0.51 0.41 0.17 10,256 4,950 3,121

SPMJ 1.67 1.58 1.52 0.46 0.37 0.15 10,011 4,884 3,060

SPFA 1.49 1.37 1.32 0.29 0.22 0.09 19,279 9,548 6,087

SPMA 1.41 1.32 1.28 0.28 0.22 0.09 19,124 9,480 6,055

“GG”, “GOM–GAM”; “WEG”, West- and East1-GAM approach; and “WCEG”, West-, Central-, and East2-GAM approach. See Table 1 for group acronym explanation.
RMSE values closer to zero represent better model fit. Moran’s I tests for spatial autocorrelation in residuals where significant values closer to 0 signifies no autocorrelation.
All reported Moran’s I values were significant (p < 0.05). Smallest AIC values also indicate a better model.

FIGURE 3 | A comparison of spring male adult (SPMA) and fall female juvenile (FLFJ) lobster GAM bottom temperature response curves by spatial location in the
GOM. Each plot shows the response curve of bottom temperature (◦C) on the x-axis, against the partial effect of lobster density on the y-axis. Figures (A,C)
compare response curves estimated for the GOM–GAM, West-GAM, and East1-GAM, while figures (B,D) compare response curves estimated for the GOM–GAM,
West-GAM, Central-GAM, and East2-GAM. Shaded regions on either side of the response curve line indicate the standard error confidence intervals. Rug plot lines
along the x-axis of each plot indicate distribution of the bottom temperature data. These response curves were estimated using 2000–2019 ME-NH Inshore Bottom
Trawl survey data and are applicable to all years tested.

comparatively underpredict in the western part of Penobscot Bay
and overpredict in the eastern part of Penobscot Bay. This was
evident across all years in both relative difference comparisons
when the GOM–GAM estimates were compared to the West-
and East1-GAM approach, as well as in the West-, Central-,
and East2-GAM approach (Figure 8). In eastern GOM, many
GOM–GAMs estimated less abundance approximately between
−68.5◦ and −67.5◦ W, and higher abundance estimates between

−67.5◦ and −67◦ W when compared to West- and East1-GAM
approaches (Figures 8, 9). These trends were present across
all tested years.

Estimates for the 2028–2055 period from localized and
large-scale approaches exemplify similar spatial patterns seen
in the corresponding distributions from 2000 to 2017. Some
season × sex × size groups estimated abundances that
extend further offshore than their hindcast counterparts (see
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FIGURE 4 | 2017 Fall American lobster estimated spatial distribution. Legend colors increase in abundance estimates from pale yellow to dark red. Each column
represents a season × sex × size group. Each row represents the modeling approach used to generate the abundance estimations. Adult abundance legend
corresponds with adult lobster group estimates. Juvenile abundance legend corresponds with juvenile lobster group estimates.

FIGURE 5 | Forecasted fall American lobster estimated spatial distribution for the time period 2028–2055. See Figure 4 for figure details.

Figures 4–7). Spring abundance estimates demonstrate an
increase in central and eastern GOM from 2017 to 2028–
2055, although this is more notable in the localized models
than the GOM–GAMs (see Figures 6, 7). These forecasted
estimates correlate with raw spring bottom trawl survey data
thus far for regions 3–5, which have all demonstrated general
increasing average catch rates (number/tow) from 2000–2019
(Supplementary Figure 5).

In general, relative differences between the GOM–GAM
and the West-Central-East2-GAM approach resulted in larger

differences when compared to the relative differences between
the GOM–GAM and the West-East1-GAM approach. This trend
was apparent across all tested years. These observations correlate
with observations in model fit, as the West-Central-East2-GAM
approach showed highest model fits, and the West-East1-GAM
approach showed model fits more similar to that of the GOM–
GAMs. Fall relative difference plots revealed that the GOM–
GAMs were likely to estimate higher abundance in western GOM
when compared to the West-GAM (Figure 10). In the spring,
the GOM–GAM comparatively estimated lower abundance in
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FIGURE 6 | 2017 spring American lobster estimated spatial distribution. See Figure 4 for figure details.

FIGURE 7 | Forecasted spring American lobster estimated spatial distribution for the time period 2028–2055. See Figure 4 for figure details.

western GOM for spring adult males in the 2028–2055 period
(Figure 10). For adult females in both fall and spring, however,
GOM–GAMs estimated higher abundance in western GOM than
the West-GAMs did in that same region for the 2028–2055 period
(Figure 10). Forecasted GOM–GAM abundance plots estimated
lower abundance in the western portion of central GOM (≈−69.3
to −68.9◦ W) and estimated higher abundance in the eastern
portion of central GOM (≈−68.9 to−68.1◦ W), when compared
with distribution estimates derived from the East1-GAM in that
same area (Figure 10). This trend was also apparent in GOM–
GAM and Central-GAM forecasted relative difference plots, but

differences were slightly more polarized. There were slightly
less consistent and patchy trends in relative differences amongst
groups in eastern GOM for the 2028–2055 forecasted period,
where both higher and lower estimates were evident (Figure 10).

DISCUSSION

We developed a modeling approach to explore and demonstrate
how estimates of season-, sex-, and size- specific American
lobster spatial distribution and abundance would vary based
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FIGURE 8 | 2017 American lobster relative differences in model abundance estimates. Legend numbers represent relative differences (%) between either the
West-East1-GAM (WEG) or the West-Central-East2-GAM (WCEG) approach and the GOM–GAM. Red legend colors indicate areas where the GOM–GAM is
predicting higher lobster abundance than the model in comparison. Blue legend colors indicate areas where the GOM–GAM is predicting lower lobster abundance
then the localized model approach in comparison. Pale yellow colors indicate similar abundance estimates between the GOM–GAM and localized models. Each
column represents a lobster season × sex × size group. Each row represents the season and localized model approach compared to the corresponding
GOM–GAM.

FIGURE 9 | 2012 American lobster relative differences in model abundance estimates. See Figure 8 for figure details.

on the spatial scale and extent of the area being modeled
in the GOM. Validation tests run for each model type and
season× sex× size group suggested reasonable predictive ability.
Nonsignificant variables varied by model and spatial location.

These results correspond with the notion that local patterns
may get masked by global statistics, if stationary assumptions
are made (Brunsdon et al., 1996; Windle et al., 2012). Stationary
assumptions are likely to be violated in the GOM, where
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FIGURE 10 | Forecasted American lobster relative differences in model abundance estimates for the period 2028–2055. Legend numbers represent relative
differences (%) between the West-East1-GAM (WEG) approach or the West-Central-East2-GAM (WCEG) approach and the GOM–GAM. Red legend colors indicate
areas where the GOM–GAM model is predicting higher lobster abundance than the localized model approach in comparison. Blue legend colors indicate areas
where the GOM–GAM model is predicting lower lobster abundance then the localized model approach in comparison. Pale yellow colors indicate similar abundance
estimates between the large-scale and localized models. Each column represents a lobster season × sex × size group. Each row represents the season and model
type compared to the corresponding GOM–GAM.

northeast to southwest gradients of bottom water temperature,
salinity, and productivity have been observed (Lynch et al., 1997;
Pettigrew et al., 1998; Chang et al., 2016), as well as spatial
differences in American lobster stock-recruitment relationships
(Chang et al., 2016), and spatially varying patterns in initial molt
timing and suddenness (Staples et al., 2019).

A trend in model fit was observed in which as the spatial
scale of models became more localized, model fit increased. The
West-Central-East2-GAM approach demonstrated the greatest
model fit to the bottom trawl survey data and showed the
most correlation in abundance estimates with raw bottom
trawl survey data, indicating greater distribution estimation
capabilities. The West-East1-GAM approach demonstrated the
next highest model fit and estimation capabilities, while the
GOM–GAM model demonstrated the lowest model fit to the
data. We speculate that the West-Central-East2-GAM approach
shows the greatest model fit and potential predictive capabilities
because of the modeling technique used on these data. By taking
into consideration the oceanographic processes in the GOM to
determine which localized areas are likely to be the most and least
similar in relationships between American lobster abundance
and environmental variables, the amount of data used for model
estimation can be maximized, while limitations of large-scale
models over a biologically complex region can be minimized.
Out of the localized scale model approaches, the results of West-
Central-East2-GAM approach suggest an improvement upon
the West-East1-GAM approach. Although these approaches are
similar, the evidence of the West-Central-East2-GAM approach

being an improvement upon the West-East1-GAM approach
suggests that enough nonstationary exists between central
and eastern GOM to make the tripartite model subdivision
worthwhile and that this technique may be more biologically
reflective. Spatial distribution estimates of the West-Central-
East2-GAM approach also seem to correlate well with raw bottom
trawl survey data and past literature, especially in central GOM
which has shown high increases in average catch over the course
of the survey, and where localized “hot” and “cold” spots may be
reflective of lobster settlement patterns observed in that region
(Steneck and Wilson, 2001).

Most lobster groups demonstrated similar spatial patterns
or temporal trends in model results and analysis, with the
frequent exception of SPMA groups. We speculate the SPMA
lobster groups often did not respond in the same way due
to differences in both bottom temperature and bottom salinity
response curves. Although each group had more than one
significant environmental variable across model techniques,
bottom temperature was a significant variable in all models,
and spring adult (male and female) bottom temperature
response curves were most distinct among groups. Most other
season × sex × size groups displayed a relationship with
bottom temperature was similar to that of the FLFJ group
(Figure 3D), where the partial effect of bottom temperature on
abundance generally increased then plateaued with increasing
temperature. Spring adult lobster often did not follow this
pattern, as exemplified in Figure 3C, where spring adult curves
were typically domed-shaped. This dome-shaped pattern was
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present in both female and male spring adult groups, however, so
it is likely that other influences, such as salinity, may be a potential
factor. The relationship spring adult males had with salinity was
unique, compared to spring adult females, which demonstrated
a similar pattern to the other season, sex, and size groups. The
spring adult male group response curve demonstrated a higher
partial effect on abundance at salinity levels >32 psu in the west,
which may explain why the GOM–GAMs were more likely to
comparatively underestimate lobster abundance in that region.

The West-Central-East2-GAM approach demonstrated the
greatest relative differences across all years when comparing its
spatial abundance predictions to those of the GOM–GAM. This
observation is the result of the multiple unique GAMs run on
localized data, and thus assumptions of spatial nonstationarity
are better satisfied. However, it is important to recognize that the
largest difference from the GOM–GAM does not automatically
equate to the best model, as it is difficult to determine the starting
biological accuracy of the GOM–GAM. Results from the three
modeling techniques at bottom trawl survey locations could be
compared to raw bottom trawl data at those same locations
to get a better understanding of how biologically accurate
each technique is at producing estimates. However, between
evidence of model fit and validation, distribution plot results,
and correlation with raw survey data, we conclude that applying
model techniques that better account for spatial nonstationarity
will result in increased model performance.

While the West-Central-East2-GAM approach demonstrated
the best model fit out of the tested models, it is important
to acknowledge some of the limitations of this model and
the techniques used. First, all models tested only included
environmental variables. No biological variables were included
in the models; thus, these models are working under the
assumption that lobster abundance is dependent solely upon
environmental variables and spatial scale. Future studies may
benefit from including biological variables, such as predator
and/or prey abundance, into the models to see how the
results would differ. Secondly, the subdivision of data technique
used for the localized models (West-East1 and West-Central-
East2 GAMs) sometimes resulted in variegated or “patchwork”
spatial distribution estimates. Such abrupt changes in abundance
estimates along the model extent lines are not likely to be
biologically representative of true American lobster spatial
distributions in the GOM. Consequently, this piecewise, localized
modeling approach should only be used to observe trends in
spatial distribution estimates, and not for precise estimations
of “true” abundance, especially near the model extent lines.
Thirdly, future studies may also benefit from exploring how
different ways of subdividing data can impact model results, and
if model fit can be further improved with more data partitions.
Lastly, it is likely that the relationships explored in this study
do not only vary across space, but over time as well. This study
only considers spatial nonstationarity in model development,
as gradients in environmental conditions throughout the study
area have been observed. We did not consider temporal
autocorrelation in this study. Based on the results from this
study, it is likely that accounting for temporal autocorrelation
could impact species distribution results as well and that
excluding temporal autocorrelation may have introduced biases

into the forecasts. However, this is beyond the scope of
this study.

This study indicates that SDM estimations are dependent
upon spatial scale and assumptions of nonstationarity. Results
from a model that implicitly assumes spatial stationarity would
differ from results of a model that better accounts for spatial
nonstationary processes. Thus, using results generated by large-
scale, stationary models could lead to different, or potentially
even ill-informed management decisions which may result in
less effective management results. Moreover, accounting for
localized processes may be essential when devising localized
regulations, as indications of change or unique dependencies of a
species may be masked when using global statistics. Management
decisions informed by large-scale, stationary models could result
in regulations being more effective in one local area and less
in others, if the relationship curves that drive the predictions
are more representative of a particular area of the study area,
rather than well represented throughout. If the West-Central-
East2-GAM model distribution estimates are more biologically
realistic as the analyses suggest, then comparatively, under
an RCP 8.5 “business as usual” climate scenario prediction
for the years 2028–2055, large-scale, stationary models could
overestimate lobster abundances in western GOM, with the
exception of spring adult males. In such case, it is important local
heterogeneity is considered in American lobster management
in the GOM because false overestimations of abundance
could lead to relaxed regulations or ill-informed biological
reference point calculations, which could potentially lead to
overfishing in western GOM.

Using large-scale, stationary modeling techniques to forecast
American lobster spatial distribution could result in subordinate
perceptions of where lobster populations will be spatially, and
to what extent. More accurate predictions of American lobster
spatial distributions will help stakeholders prepare and employ
best practice measures to ensure the sustainability and longevity
of the industry.
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